Practical Modeling of Bayesian Decision Problems -- Exploiting Deterministic Relations

نویسندگان

  • Anders L. Madsen
  • Kristian G. Olesen
  • Søren L. Dittmer
چکیده

The widespread use of influence diagrams to represent and solve Bayesian decision problems is still limited by the inflexibility and rather restrictive semantics of influence diagrams. We propose a number of extensions and adjustments to the definition of influence diagrams in order to make the practical use of influence diagrams more flexible and less restrictive. In particular, we describe how deterministic relations can be exploited to increase the flexibility and efficiency of representing and solving Bayesian decision problems. The issues addressed in the paper were motivated by the construction of a decision support system for mission management of unmanned underwater vehicles (UUVs).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Bayesian Melding of Deterministic Models and Kriging for Analysis of Spatially Dependent Data

The link between geographic information systems and decision making approach own the invention and development of spatial data melding method. These methods combine different data sets, to achieve better results. In this paper, the Bayesian melding method for combining the measurements and outputs of deterministic models and kriging are considered. Then the ozone data in Tehran city are analyze...

متن کامل

Exploiting Structure in Policy Construction

Markov decision processes (MDPs) have recently been applied to the problem of modeling decisiontheoretic planning. While traditional methods for solving MDPs are often practical for small states spaces, their effectiveness for large AI planning problems is questionable. We present an algorithm, called structured policy iteration (SPI), that constructs optimal policies without explicit enumerati...

متن کامل

Bayesian Interactive Decision Support for Multi-Attribute Problems with Even Swaps

Even swaps is a method for solving deterministic multi-attribute decision problems where the decision maker iteratively simplifies the problem until the optimal alternative is revealed (Hammond et al. 1998, 1999). We present a new practical decision support system that takes a Bayesian approach to guiding the even swaps process, where the system makes queries based on its beliefs about the deci...

متن کامل

A New Acceptance Sampling Design Using Bayesian Modeling and Backwards Induction

In acceptance sampling plans, the decisions on either accepting or rejecting a specific batch is still a challenging problem. In order to provide a desired level of protection for customers as well as manufacturers, in this paper, a new acceptance sampling design is proposed to accept or reject a batch based on Bayesian modeling to update the distribution function of the percentage of nonconfor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society

دوره 32 1  شماره 

صفحات  -

تاریخ انتشار 2001